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SUMMARY

With the help of finite-difference  acoustic
wave equation modeling and scale-model analysis, we
study the kinematic and dynamic characteristics of
strong scattering from inclusions with small radii of
curvature compared to a wavelength. For an inclusion
with a smooth (relative to a wavelength) curved
surface, both grazing-incident and critically-incident
elastic waves excite creeping waves that propagate
along the inclusion surface. These results are used to
formulate an elastic ray-tracing method that can be
used to describe scattered waves from inclusions whose
size is close to a wavelength. For all inclusion
geometries modeled, including irregular inclusions,
we discovered a large-amplitude arrival that was not
predicted by traditional ray-theory. The raypath and
traveltime of this arrival, which we term an inclusion
wave, can be predicted by our ray theory.

LIMITATION OF EXISTING THEORIES

It is difficult to obtain analytic solutions for
scatterers that have complex geometries. Even in
homogeneous elastic material, the boundary conditions
on the surface of a crack can make solutions to the
elastic wave equation difficult to obtain. To simplify
the problem of scattering, some investigators have
proposed ray theories. An extension to classical
geometrical ray methods was introduced by Keller
(1962) in his Geometrical Theory of Diffraction (GTD ).
The basic idea of GTD is that an incident ray generates
a cone of diffracted rays when the boundary of the
inclusion is curved. The GTD has been widely used in
electromagnetic and sonic wave diffraction since 1957.
The GTD was extended by Achenbach et. al. (1983), who
proposed that two cones of P and S diffracted rays are
generated when a ray carrying a high-frequency body-
wave strikes the edge of a crack. Both theories breaks
down in the shadow zone of inclusion and at caustics
(Achenbach et. al, 1983; Marston, 1990). One of the
arrivals created by a strong scatterer that is not
predicted by existing ray theory is the so-called
creeping wave. The creeping wave has been shown in

physical modeling to travel along the inclusion
interface at the wave speed of the outer medium and

take-off tangentially from the inclusion surface to the
receivers.

In summary, there is currently no ray theory
that reconciles with mathematical and scale

modeling results and that can be used in the shadow
zone of a strong scatterer.

ULTRASONIC AND MATHEMATICAL MODELING

Parameters of Models

Figure 1 shows the geometry of the scale
models used to investigate scattering from inclusions.
Inclusion models were built with four different radii,
which ranged from 2.25 to 9 cm. For each model, we
used a plexiglass plane with dimensions of 60x30x0.5
cm as the host material. We drilled holes of different
radii for the inclusion, and finally we filled the
inclusions with wax or air. For intact plexiglass, the P-
wave velocity was found to be 2331 m/s, and the S-
wave velocity was 1405 m/s. We used a piezoelectric
transducer (r =1 cm) as the source and the receiver.
The source emitted a pulse with a center frequency of
36 kHz . Consequently the wavelength was 6.5 cm and
the corresponding ka for each inclusion was 2, 4, 6.5
and 9 respectively, where k is the wavenumber and 2
is the radius of inclusion.

Our source and receiver were assumed to have
a far-field radiation pattern with the mathematics
given by White( 1983). For plexiglass the maximum
amplhitude of the compressional wave is concentrated
along the axis of the transducer and the maximum
amplitude of the shear wave is concentrated at an
angle of 38 degree with the axis of the transducer (see
Figure 1). It was important to correct for these
radiation patterns in computing the amplitude
scattering response of the inclusion.
From the scale-model seismograms alone, it was often
difficult to correctly identify the travelpath for a
specific arrival. Therefore along with traveltime and
moveout analysis, we used f-d acoustic wavefield
snapshots to identify scattered travelpaths and
wavefronts. Although the acoustic modeling did not
incorporate shear and converted wave modes, and
therefore did not accurately predict the scale model
seismograms, wavefield snapshots were found to be

invaluable in understanding the mechanics of
scattering.
Wavefront  snapshots for a low velocity

inclusion are shown in Figure 2. These snapshots are
from the same scatterer size and the same source and
receiver geometry as was used in the scale-model
study. Using snapshots allowed us to identify a
diffracted P-wave moving around the inclusion
demonstrating the creeping wave. From Figure 2 we
see that the creeping wave travels along the
inclusion at the outer P-wave velocity, consistent
with the results of previous investigators.

Scattering from Inclusions

Before examining the seismograms recorded
from the scale-model, we present a diagram (Figure 3)
illustrating some of the wavefronts observed in the
seismograms. These wavefronts display the wave
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motion around and inside the inclusion due to
reflection, diffraction and refraction. Further references
to arrival types will correspond to the wavefront
diagram in Figure 3. Figure 4 shows common shot
data recorded from the circular inclusion scale-model
experiment. In Figure 4a, which correspond to r =2.25
cm, the expected time-delay for P and S waves
traveling around the inclusion is not obvious because
the wavelength of the P-wave is nearly 3-times the
inclusion radius. However, we can see two sets of
diffracted P-S , waves (see Figure 3) between the
arrivals times of the direct P and S waves. The feature
of the diffracted P-S waves in Figure 4a is similar to the
data acquired from the crack models since this
inclusion is quite small. The diffracted S-P wave at t =
210 us and x = - 4 to 4 cm arrives
microseconds before the direct S-wave.

As the radius of the inclusion increases (Figure
4b), we see a distinct time-delay for diffracted P and S
waves traveling around the inclusion. Typical
kinematic traits of scattering waves emerge in Figure
4b, where the shear wave motion is dominant in the
shadow zones and the compressional wave motion

only appears in a small range of offsets away from the
shadow zone. From x = -20 to -12 ¢m and 12 to 20 cm,

and t =240 to 320 us, there are some reflected shear
waves generated on the side-face of the inclusion. The
analogous reflected P waves also occur faintly behind
the diffracted P wave. As the inclusion radius increases
to 6.75 cm, we saw earlier arrivals interpreted as S-P-S
and S-P waves.

To compute the contribution of the scattered
field to the total received energy, we calculated a
coefficient of scattering shown in Figure 5.This
coefficient was computed for the inclusion of radius of
45 cm. The y axis represents the amplitude ratio of
different transmitted and scattered arrivals to the
theoretical radiation pattern of the source and
receiver. For the transmitted P and S waves, this ratio
isA/U2or A/ Uq2 For the converted waves the ratio is
A/ UrUy. For the air models, we found that over 90%
of the recorded energy moved around the inclusion.
Note that in the shadow zone, the energy sum of all
scattered arrivals arriving as shear waves, including
diffracted S, S reflection, P-S and S-P-S, exceeds that of
the scattered arrivals arriving as P-waves. The energy
of scattered S waves is about 60% of the total received
energy in the shadow zone. This result explains why
the diffracted P wave attenuates dramatically in the
shadow region and how the energy is redistributed.
This figure also explains why Keller’s acoustic ray
theory is not applicable to scattering in rocks.

only a few

A RAY METHOD FOR DESCRIBING STRONG
SCATTERING

Traditional geometrical ray theory provides an
asymptotic “ high frequency ” approximation to wave
propagation problems in a medium with locally
planar interfaces. In this situation, both reflected and
refracted ray obeys Snell’s law. When the dimensions

of an inclusion are comparable to a wavelength, ray
theory is thought to be inaccurate (Pierce and

Thurston, 1992).

We propose a new ray theory that appears to
accurately predict the traveltimes of all body waves
scattered from an inclusion. We simplify the problem
of computing the raypaths by making the following
assumptions for travelpaths along inclusion
boundaries, which were made by examining with the
physical and f-d modeling results:

(1) The critically incident point and grazing
incident point divide the curved inclusion surface
into three segments. The first segment is pre-critical
incidence, the second is post-critical to grazing, the
third is post-grazing.

(2) Both a critically-incident ray and a grazing
ray excite creeping rays.

(3) The mode of creeping ray excited by critical
incidence is converted.

(4) Creeping rays are geometrically equivalent
to grazing incident rays.

With these constraints on rays traveling along
the boundary of the inclusion, we use Snell’'s law to
describes all raypaths:

Vi coso; =V cosf;
Here ¢; is angle between the incident ray and the
inclusion tangent, ¢; is angle between the transmitted
rays and the inclusion tangent, V; is the velocity of
incident rays and V; is velocity of transmitted rays
that reflect and diffract off the inclusion or refract into
the inclusion.

To verify the accuracy of our ray method, we
computed ray-theoretical traveltimes for the r = 4.5
¢m void model. Figure 6 compares of the time-distance
curves { solid line) computed using our raytrace
method with time picks (black triangle) with the scale-
model data of Figure 4b. From Figure 6, we can see that
the most of the traveltimes are nearly identical.
However, from x =- 8 to 8 cm and t =150 -180 ps, there
is some mismatch because it is difficult to identify the
first-arrival of the P-S and diffracted P wave, as these
arrivals interfere with each other. From the close
traveltime agreement in Figure 6, we conclude that
raytracing can be used to describe arrival types and
times for an inclusion with a curved smooth surface
(relative to wavelength), regardless of the inclusion
size. We have not yet examined whether an extension
to Zoeppritz equations could be used to also predict
the amplitudes.

INCLUSION WAVE

In both the f-d and scale modeling with a wax
inclusion, we detected a large arrival that was
produced even when the inclusion was asymmetric
and irregular. We term this arrival an inclusion wave,
as it is not predicted by traditional ray theory. The
inclusion wave is related to a ray caustic, that is two

or more raypaths from an incident wave
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intersecting. The wavefield snapshots in Figure 2 were
used to understand the kinematic characteristics of
the inclusion wave in a low velocity inclusion. On the
post-grazing segment of the inclusion surface, the rays
intersecting to form the caustic are produced by the
creeping P-wave. As the velocity of host medium is
larger than velocity in the inclusion, the wavefront
formed inside inclusion is concave. After a period of
time, this wavefront coils to a focussing point (the
caustic). Then this point becomes a convex wavefront
as it moves to the back edge of inclusion. This
wavefront refracts and reflects on both sides of the
inclusion surface. Inside the inclusion, more inclusion
waves are generated by multiple reflection.

We also computed an irregular inclusion
model. The wavefield snapshot showed that when the
radii of irregular inclusion is close to wavelength, the
inclusion wave still can be produced. In the range of
l<ka <20, the inclusion wave has strong energy,
because the low frequency waves have a large
constructive interference zone. By incorporating
caustics into our ray method, we should be able to
accurately predict the traveltime of the inclusion
wave.However,neither the amplitude nor the
frequency dependence of the inclusion wave can be

described by ray methods.

CONCLUSIONS

We obtained the several results from
ultrasonic and mathematical modeling for the
inclusion models in the range of 1<ka <10.

(1) The scattered wavefield from an inclusion
with a curved surface can be described by reflected,
diffracted and refracted rays. All the diffracted waves
come from grazing and critical incidence.When the
inclusion has a large velocity contrast with the outer
medium,the refracted waves that penetrate into the
inclusion consist of a relatively independent local
caustic system.

(2) For receivers in the shadow zone of the
scatterer, the shear component has stronger energy
than the compressional component. This result
suggests that any inversion technique that does not
incorporate scattered shear waves will have severe
limitations.

(3) A large arrival related to a ray caustic was
observed in f-d and ultrasonic modeling. We term this
arrival an inclusion wave since it is not predicted by
traditional ray theory. In the range of 1<ka < 20, the
inclusion waves can have strong energy.

By assuming that the grazing and critical
incident rays excite creeping rays and that all creeping
rays are geometrically equivalent to grazing incident
rays, we obtained a ray method that can accurately
predict arrival times for all elastic arrivals scattered
from an inclusion, including the shadow region. Ray
theory can be used to accurately predict all scattered
arrival times for smooth inclusion with ka >1.
Interestingly, Marion and Coudin (1993) showed that

ray theory could be used to accurately estimate normal

incidence direct arrival times through layered media
up to 1/d = 10, where d is the thickness of the layer.
Our results appear to be valid up to 1/a =5. We
suggest that correctly formulated ray methods can be
used for seismic modeling and inversion in a wider
range of applications than previously believed.
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Fig. 1. The geometry of the inclusion model. The radii of inclusion
respectively are 2.25, 4.5, 6.75 and 9 cm, which correspond to ka
=2,4,65and 9.

Fig. 2. f-d snapshot at 159 ms from the low velocity inclusion
model. The P velocity of the outer medium is 2331 m/s and the P
velocity inside the inclusion is 1500 m/s.
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Fig. 3. The wavefronts from a low velocity scatterer. There are
reflected, diffracted and refracted waves in this scattered

wavefield.
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Fig. 4. Common source gray-scale seismograms from the circular
inclusion scale-model with arrivals labeled. The inclusion models
have different radii of (a) 2.25 cm, (b) 4.5 cm. S, P diffracted S and
P waves, S-P, P-S and S-P-S converted diffracted waves are
labeled. The SS arrival is a reflected wave from the side-face of
the inclusion.
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Fig. 5. Energy distribution of various scattered waves. The v axis
represent the amplitude ratio of transmitted P, S to Urz, U¢ ; and
the amplitude ratio of P-S, $-P,§-P-§ to U;U, , Ur and U, are
computed from White's source equations .
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Fig. 6. Comparison between the time-distance curve (solid line)
computed using our raytrace method with time picks (black
triangle) from the scale-model data. The times were picked from
wiggle trace displays rather than the gray-scale diagram shown
in Fig. 4.
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